
40 

 
Abstract - We introduce the 4S system capable 

of handling numerical problems within the general 
Inductive Logic Programming (ILP) framework. 
Previous systems had severe problems with 
handling numerical domains, as well as with using 
background knowledge and multi-relational data at 
the same time. The idea introduced in 4S is that 
regression results are integrated into an ILP 
program as numerical formulas. A formula is 
created dynamically according to the available 
examples and hypotheses. In this way, 4S can deal 
with numerical problems presented in multi-
relational data by using background knowledge. 
The logic-based and numeric-based techniques in 
4S collide in the presence of complex recursion, 
but we believe that the functional power of our 
system is less limited than related ones. We 
analyze the performance of 4S. 

 
Inductive logic programming, Linear regression, 

Machine learning 

1. INTRODUCTION 

Various attempts have been made to 
implement Inductive Logic Programming (ILP) 
systems that are capable of handling numerical 
data [4], [22], [29], [30]. The general idea is to 
combine ILP with numerical manipulation in order 
to enlarge the space of problem domains that can 
be successfully tackled by ILP systems. Basic 
ILP has several advantages [21], such as the 
ability to deal with data stored in multiple 
relational tables and to take into account 
background (domain) knowledge expressed as a 
logic program. ILP also uses powerful expression 
language to describe logical relations. 

Pure ILP, however, is not capable of handling 
numerical data [2], especially when the output 
“class variable” is continuous. ILP systems 
usually do not differentiate input and output 
variables, while numerical problems often involve 
differentiation. By itself, ILP cannot even perform 
such numerical functions as (in)equalities, 
arithmetic, trigonometry, geometry and linear 
regression. Of these, regression is the most 
relevant one in machine-learning problems since 
numerous real-life models can be approximated 
by formulas. Regression enables construction of 
 

1 Jožef Stefan Institute, Ljubljana, Slovenia 
{damjan.demsar, matjaz.gams}@ijs.si 

a formula from a given set of examples, but it 
lacks logical mechanisms for constructing more 
advanced logical models on top of formulas. ILP 
and regression are therefore ideal for combining 
different advantages into an advanced integrated 
system, which we refer to as first order 
regression [14]. 

FORS [14] (First Order Regression System) 
was one of the first implemented ILP systems 
capable of handling numerical data. First Order 
Regression is an integration of (first order logic) 
Inductive Logic Programming and numerical 
regression. After first experiments with the 
implemented FORS system, we started with an 
advanced algorithm and system 4S.  

The paper is organized as follows: In Section 2 
we describe definitions of ILP, regression and 
integration. In Sections 3 and 4 we describe the 
4S [6] system as an algorithm and as a fully 
operational program. In Section 6 we present 
tests on artificial and real-world problems.  

2. ILP, REGRESSION AND FIRST ORDER REGRESSION 

For our purposes, ILP can be defined in the 
following way: 
• B is background knowledge consisting of a 

set of definite clauses 
• E is a set of examples E = E+ ∪ E- where: 
• E+ = {e1, e2,…} are positive examples that are 

definite clauses, often ground unit clauses. 
• E- = { }K,, 21 ff  are negative examples that 

are Horn clauses, often ground unit clauses. 
• B |≠ E+, where X |= Y denotes semantic 

entailment of Y by X 
• Given B and E, the output is a set of definite 

clauses H = {D1, D2,…}, that is a complete 
and consistent explanation of the examples, 
from a predefined language L. H usually 
satisfies at least the following conditions: 
o Each Di explains at least one positive 

example. That is B ∧ Di |= ej ∨ ek ∨ …, 
where em ∈ E+ 

o B ∧ H |= E+ 
o B ∧ H |≠ f, f∈E- 

Linear regression is defined as follows: 
• E is a set of examples in the form yn=f(x1,n, 

x2,n, …,xm,n), where xi,j are real-valued 

Implementing Numerical Reasoning in ILP 
Demšar, Damjan1 and Gams, Matjaž1 



41 

parameters.  
• Given E, the output is a set of parameters A0, 

A1, …, Am, that minimizes the sum of squares 
Σn(yn-(A0+A1x1,n+A2x2,n+… +Amxm,n))2  

We propose the following integration of ILP 
and regression:  
• B is background knowledge consisting of a 

set of definite clauses 
• E is a set of examples en in the form of 

ground unit clauses f(yn, x1,n, x2,n,… , xm,n) 
where xi,j are either discrete, real-valued or 
arbitrary terms while yj are real-valued 

• Given B and E, the output is a set of definite 
clauses H = {D1, D2,… } from a predefined 
language L, that is a good and consistent 
explanation of the examples. H satisfies at 
least the following conditions: 

• B ∧ H |= f(y’n, x1,n, x2,n,… , xm,n) 
• Σn (yn – y’n)2 is “loosely” minimal 
• Each Di covers at least a preset number of 

examples. 

3. 4S SYSTEM 

4S is a descendant and upgrade of FORS. 
Some aspects of FORS and 4S are common: 
both systems have the same input, learning and 
testing examples and definitions of background 
knowledge predicates. They both produce a 
working Prolog program that describes the 
relation in the input data. 

4S and FORS are based on a modified FOIL 
[27] algorithm (which is a basic covering 
algorithm), which was developed for searching 
relations between discrete classes. In order to 
handle continuous classes efficiently, specific 
modifications are needed. The main difference is 
lack of negative examples. We don’t have any 
negative examples at all, so we need to redefine 
suitability of a hypothesis.  

In ILP, a hypothesis is usually suitable when it 
is complete (covers all positive examples) and 
consistent (does not cover any negative 
examples). In our case we still use 
completeness, i.e. we usually generate 
hypotheses that cover the whole range of input 
variables values. On the other hand, since we do 
not have negative examples, we cannot use 
consistency to eliminate unsuitable hypothesis 
(or clauses). To eliminate unsuitable clauses, 4S 
uses mean squared error combined with a user 
defined suitability limit. The other major 
modification in 4S regarding classical inductive 
logic programming systems is based on a need 
to handle continuous classes. In 4S, the class 
variable is predicted with a linear combination of 
continuous variables. 

The 4S algorithm is implemented as a 4s_work 
procedure (Figure 1), which constructs 
Hypothesis, i.e. H. It uses beam-search with a 
user-defined beam, set by default to 10.  

 
H = {}; 
while (|E|>0) { 
WorkClauses= {DefaultClause}; 
NewClauses = {}; 
repeat  
OldWorkClauses=WorkClauses; 
NewClauses = RefineClauses(WorkClauses); 
WorkClauses=BestOf(WorkClauses∪NewClauses); 
until (WorkClauses == OldWorkClauses); 
D = BestClause(WorkClauses); 
H = H ∪ {D}; 
E = E – CoveredExamples(D) 
}  
if (needed) H = H ∪ {FailSafeClause} 

Figure 1. 4S_work procedure 

In each step all current clauses are refined with 
an addition of a literal (see subsection 3.2). 

After a literal is added, we calculate the 
coverage of the new, refined clause. From the 
covered examples all numerical parameters are 
taken (all valid combinations are generated, each 
representing one example for linear regression), 
linear regression is performed and the error is 
calculated. Then the output of the linear 
regression is transformed into a Prolog equation 
and added to the clause. 

Each generated clause must satisfy preset 
conditions (e.g. the number of examples covered, 
variable depth…). Since these conditions are a 
part of algorithm parameters their explanation 
can be found in Section 3.4. If the error of the 
clause is found to be sufficiently small, 
refinement of the current clauses is stopped and 
the current clause is added to the hypothesis. 

3.1. Differences to FORS 
Since we had no working implementation of 

FORS available, the implementation of 4S, does 
not base on the code of FORS. but on its 
performance. In this subsection we list some new 
mechanisms that are not available in FORS. 

The condition that usually stops the 
specialization of clauses and prevents the 
overfitting to the learning examples is the 
demand that every clause covers a minimal 
number of examples. However, with the addition 
of new literals the examples expand and split into 
multiple sub-examples, generated from original 
ones. For example when we have an example 
tuple (a, 2), and apply a background knowledge 
call of a predicate that can for that example 
return two possible values 10 and 15, the 
example tuple (a, 2) splits into 2 new example 
tuples (a, 2, 10) and (a, 2, 15). In this way, 



42 

examples can expand into enough sub-examples 
to satisfy the minimal-examples condition in each 
clause. In that case overfitting can occur since 
from only one original example several seemingly 
different examples can be produced. To fight this 
problem, we used a mechanism that treats all 
sub-examples that were created from the same 
original learning example as one example. In that 
case every clause must cover a certain number 
of original examples that were provided in the 
input data. 4S has therefore two ways of counting 
examples – one of only original examples and 
one of virtually created examples. 

When 4S is trying to set a suitable constant for 
the comparison literal (Var < const) there are two 
possible ways of finding the value the constant 
should have. The first way is precise but slow. It 
accepts each possible value that comes into 
consideration. Then, specialization is performed. 
A new clause is generated from the old one with 
the addition of a comparison literal with the 
selected value. Linear regression is performed 
and average error is calculated. Only the clause 
with the lowest average error is accepted. 

The second way is much faster but less 
precise. It is based on the fact that the clause 
under specialization already contains a linear 
equation E. Again each possible value for the 
constant is taken under consideration, and all 
examples covered by the original clause that 
satisfy the new condition. The average error is 
predicted using the equation E. The value with 
the lowest predicted average error is chosen. The 
specialized clause is generated, linear regression 
is performed, and actual error is calculated. 
However, it is possible that the value producing 
the lowest average error is not the best choice.  

Also parameters that limit the depth of 
recursion calls and add a possibility of predicting 
constants and not linear equations were added. 

Some of the mechanisms available in FORS 
were left out – for example the MDL evaluation 
and the usage of information whether a 
background predicate is determinate or not (to 
decide whether to add a fail safe clause or not). 

3.2. Language 
The hypothesis language of 4S is Prolog. A 

hypothesis together with the supplied background 
knowledge predicates is a working program in 
Prolog. Hypotheses generated by 4S have the 
following form: 

 
func(Y,X1,X2,... ,Xn):- 
 literal1, 
 literal2, 
 ... 
 literalm, 

 Y is linear_equation, 
 !. 
Here Y is a class variable, X1... Xn are input 

data variables or attributes, and linear_equation 
is a linear combination of input variables and 
variables that we get as an output with 
background knowledge predicates calls. 

  
A literal can be one of: 

1. Background knowledge predicate call 
2. Comparison of a continuous variable with a 

constant (Xi  >= constant or Xi =< constant) 
3. Unification of a discrete variable with a 

constant (Xi = constant) 
4. Recursive call func(Y', X'1, X'2,... ,X'n) 

3.3. Input data 
The input data consists of: 

1. Type declarations that can be one of three 
kinds: discrete, continuous (real-valued) or 
term (any Prolog term), e.g. type(real, 
continuous), where real is the name of the 
type. 

2. Declaration of the target function/predicate, 
e.g. target(linear(‘Y’,’X’)). 

3. Variable declarations. Variables used in target 
predicate declaration are bound to specific 
types, e.g. variable(‘X’, real). 

4. Background knowledge predicates declaration 
includes data about types and input/output 
modes of the arguments, e.g. bkl( cos( -real, 
+real), total), where +real means that the first 
argument is input argument of type real, -real 
means that the second argument is output 
argument of type real. 

5. Background knowledge predicates definition is 
actually the Prolog procedure that is used 
whenever background knowledge predicate is 
called, e.g. sin(R,A):- R is sin(A). 

6. Learning data are the facts about the target 
predicate. Unlike classical ILP systems, 4S 
does not use any negative examples. An 
example of a learning example is 
lrn(linear(4.30,1)). 

7. Testing data, e.g. tst(linear(4.00, 0)).  
8. Parameters, e.g set(max_allowed_error, 

0.001), See Table 1.  

3.4. Parameters 
The 4S system uses the parameters in Table 1 

to guide search through a hypothesis space. By 
setting these parameters we adjust 4S to a 
particular domain. To achieve best results, we 
must understand the problem domain and 
performance of 4S. We cannot expect to do 
better, since it is impossible to design a uniform 
ILP system that can handle numerical problem 



43 

from arbitrary domains without any adjustments. 
Among possible solutions, setting parameters is 
the simplest solution. 4S can be applied with 
parameters set by humans or other programs. 

4. PROBLEMS WITH INTEGRATION 

The combination of recursion and linear 
regression causes a feedback deadlock: the 
linear regression process needs an instantiated 
result of a recursive call, whereas the recursive 
calls require the result of linear regression. This 
occurs in all functions of the form f(n) = g(f(n-1)) 
where g(m) is a linear function. 

There are a couple of ways to resolve this 
mutual dependency, but each introduces 
additional difficulties. The first way is to expand 
recursive calls until we reach a bound, and 
perform an evaluation with already instantiated 
returned recursive parameter. This approach is 
sometimes referred to as lazy or late bounding or 
instantiation [29]. The problem with this solution 
is that it demands capabilities of symbolic 
computing. Furthermore, there is no guarantee 
that this process would produce enough 
examples for linear regression, and no guarantee 
that the solution would be reasonable. 

The second way to deal with the deadlock is to 
use the learning examples in a non-circular way. 
In this way, only learning examples that have 
known values for recursive calls (known from 
learning examples, or previously accepted 
clauses) are taken for input into the linear 
regression process. However, this demand is 
difficult to meet in real-world problems – it 
demands that the available learning examples 
cover precisely those cases that the recursive 
calls require. Clearly, only synthetic problem 
domains will have such nice properties. Since we 
wanted 4S to be applicable to real-world 
problems, we did not find this solution to be 
acceptable. 

The first simple solution implemented in 4S is 

to limit the recursion and/or complexity depth. In 
case of too deep a recursion, the program 
discards the current clause and with another one.  

To cope with recursion, we introduced a limited 

set of parameters that enable solving a specific 
set of predefined recursive forms. For example, 
solving n! can be found by limiting the linear 
equation to the simple form of y = xi. This 
approach certainly cannot solve more complex 
cases of recursion, but can handle simple ones.  
In a similar way, it is possible to tune 4S so that it 
finds various predefined special forms. The 
problem with this approach is that with more 
complex expressions, the tuning and related 
hand coding gets more and more time 
consuming. On the other hand, we expect that a 
couple of simple cases suffice for expected real-
life problems. In face of the complexity of the 
task, this seems a sensible approach. 

Putting aside potential mutual deadlock 
between recursions and regression, other ILP 
mechanisms are intact in 4S. If we discard 
regression, 4S constructs recursive ILP programs 
in the same manner as other ILP systems. 

5. RELATED WORK 

Systems like LAGRANGE [9] and GOLDHORN 
[19] discover equations from numerical data, but 
since they are not ILP systems they lack its 
expressive power.  There are several approaches 
adding numerical capabilities to ILP systems: 
restricting the hypothesis language to logical 
atoms [25], using built-in definitions for 
inequalities [4], [26], [27], using transformations 
of data to propositional level [21], using 
background knowledge for regression predicates 

[23], [29], [31] and adding regression capabilities 
to the ILP engine [14]. Several systems [3], [17], 
[18] also produce working prolog programs, that 
are capable of predicting numerical values, but 
do this by constructing a regression tree first and 
then translating it into a Prolog program. By 
taking this approach some of the power of 

Table 1 Parameters used in 4S 
Parameter Default  Explanation 
min_examples 10 Minimal number of examples each clause must cover 
absulute_examples True Only original examples and not subexamples count for min_examples 
max_call_depth 10 Maximal depth of recursion 
max_literals 10 Maximal length of a clause 
max_clauses 10 Maximal length of a hypothesis 
max_variable_depth 10 Maximal depth of variables  
max_allowed_error 1*10-18 Clause with an average error of less than that is always accepted (deemed as perfect) 
min_improvement 0 How much specialized clause must be better from its predecessor 
allow_recursive False Whether recursion is permitted 
extensive_comparing True Is slower but more precise selection of comparison constant allowed 
sv_decomposition True Is robust but slow SV matrix decomposition rather than fast but sensitive LU 

decomposition used for linear regression 
allow_regression True Is regression permitted 
max_regression_vars -1 How many variables can be used in a linear equation (-1 means all) 



44 

hypothesis language is lost. 
FORS [14] is the system that first used first 

order regression. It combined the expressive 
power of ILP with linear regression. It showed 
that first order regression is able to produce 
results. While 4S is based on principles laid by 
FORS, it is a new system. Several new 
techniques were developed and some old ones 
from FORS, that did not perform as expected, 
were eliminated. In 4S we also included 
extensive comparing of continuous variables and 
the option to force the system to count only 
basically different examples to satisfy the minimal 
number of examples condition (as described in 
Section 3.1).  

The system described in [29], [30] as well as a 
system described in [31] are also capable of 
handling numerical domains using background 
knowledge for comparisons, and other numerical 
operations including regression. Since the main 
goal of the designers was to keep all capabilities 
of the original ILP engine, several compromises 
had to be done. In case of numerical domains, 
those systems cannot navigate efficiently through 
the search space before predicates predicting 
numerical values are added to the clause. To 
ease the navigation through the search space 
and to produce meaningful clauses, the system 
requires the user to provide a refinement 
operator, cost calculation and pruning. This 
certainly enhances the performance of the 
system compared to 4S, but it also significantly 
decreases the ease of use and practical 
applicability to real-live problems. On the 
theoretical-ability scale, those systems outrank 
4S, but judging from results presented in [29] and 
[30] one gets the impression that 4S is at least 
competitive in terms of practical use, as it does 
not require constant involvement by the user. 

6. TEST DOMAINS 

6.1. Steel grinding domain 
The steel grinding domain data describes the 

relationship between the roughness of a steel 
workpiece and the sound produced by grinding 
that workpiece [13]. The idea is to enable 
automatic control of the grinding process. An 
example is termination of the process when 
performance becomes unsatisfactory [12]. Since 
control decisions can be quickly deduced from 
the roughness of the workpiece, our task was to 
predict roughness from the sound of grinding.  

The data was collected during an experiment 
where the workpiece was fitted with an 
acceleration sensor. That data was then 
spectrally analyzed, and the following data was 

available to 4S:  
• size of the area of whole spectrum 
• frequency of the maximum peak 
• frequency of the middle of the spectrum 

During the experiment the process of grinding 
was stopped and the surface roughness 
measured 123 times. Background knowledge 
predicates enabling 4S to compare variables 
were given (<= and >=). 

Table 2 Relative error of 4S on Steel grinding. 
min no. of 
examples 

all var. 
test 

two var. 
test 

one var. 
test 

“no” var. 
test 

1 0.633 0.584 0.529 0.840 
2 0.656 0.594 0.518 0.629 
4 5.403 1.877 1.257 0.595 
6 0.550 0.470 0.536 0.624 
8 0.509 0.461 0.558 0.634 
10 0.508 0.452 0.545 0.657 
12 0.509 0.476 0.544 0.643 
14 0.508 0.473 0.547 0.656 
16 0.500 0.465 0.544 0.660 
18 0.500 0.453 0.558 0.662 
20 0.441 0.451 0.565 0.662 
30 0.443 0.455 0.559 0.655 
50 0.501 0.516 0.499 0.825 
80 0.457 0.464 0.674 0.965 
100 1 1 1 1 

Table 3 Relative error of FORS on Steel grinding. 
min no. of 
examples 

lin reg 
test 

no reg 
test 

lin reg, MDL 
test 

no reg, MDL, 
test 

1 0.74 0.79 0.73 0.62 
2 9.15 0.69 0.76 0.60 
4 1.01 0.55 0.71 0.58 
6 0.81 0.60 0.66 0.54 
8 0.78 0.58 0.63 0.59 
10 0.72 0.56 0.62 0.56 
12 0.69 0.63 0.63 0.64 
14 0.64 0.60 0.62 0.62 
16 0.70 0.57 0.70 0.57 
18 0.71 0.62 0.71 0.62 
20 0.74 0.64 0.74 0.64 

Experiments were conducted in the form of 10 
different sets consisting of 70% learning and 30% 
testing examples (same sets were used by 
FORS) and all combinations of minimal number 
of (original) examples in a clause (possible 
values 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 30, 50, 
80, 100) and the type of linear equation (allowed 
are all variables, 2, 1 and no variables - a 
prediction of a constant). From the results on the 
learning and test data relative (compared to the 
prediction of an average learning value) average 
error was calculated. The results are presented in 
Table 2. 

If we compare the results of experiments made 
with 4S in Table 2 and FORS [15] in Table 3 we 
can see that when regression is not permitted 
FORS (with or without MDL) performs better than 
4S. However with linear regression even when 
using MDL FORS overfits the data. The clause 
with the best results by 4S (made using linear 



45 

regression with at least 20 examples covered by 
each clause) is small and simple, just what we 
would hope for. 

6.2. Finite element mesh domain 
Finite element method is used in engineering 

where stress in structures needs to be calculated. 
The structure is divided into many simpler 
elements. A set of linear equations must be 
solved to calculate the deformations of the 
elements. Since the number of the elements 
affects the computational time and the accuracy 
of the solution (both increase with the number of 
the elements) a suitable compromise in the 
partition into elements must be found. In recent 
years a number of very successful mesh 
generation algorithms was reported [20]. We 
should not be surprised to see a significant gap 
between 4S and specialized algorithms. 
However, our aim is to compare 4S’ ability to 
generate meshes to that of other ILP systems. 

Partitioning usually cuts the edges of the 
structure into multiple parts. Then the mesh 
dividing the elements is automatically generated, 
from the start points on the edges. So the task is 
to find the number of partitions for each edge of 
the structure. Since the edges can have different 
attributes and their partitioning is also depended 
on other edges and their attributes, inductive 
logic programming is the natural choice for 
solving this problem. Others have tried it before 
and it turned out to work well [5], [7], [8], [14], 
[16].  

In our experiments the data from [8] was used. 
It describes five structures labeled from A to E. 
Each structure has from 28 to 96 edges. For 
each edge a number of partitions was determined 
and computationally verified by an expert [8]. Our 
target was a relation that describes the number of 
elements for each edge.  

Experiments consisted of all combinations of 
parameter values for min_examples  (2, 5, 10)  
- only original examples were counted, and 
max_literals (2, 4, 6). 

At all times the maximal variable depth was set 
to 2, which forced 4S to use only the edges at 
most two steps away from the target edge 
(neighbors, opposites, neighbor’s neighbors…). 
For each possible setting five experiments were 
made. Every time one of the structures was set 
aside for testing and the other four were used for 
learning. Results of the experiments can be 
found in Table 4, where a prediction is deemed 
correct if 4S prediction was correct after rounding 
to the nearest integer. If the prediction was 
exactly between two integers (e.g. 1.5) false 
prediction was assumed. 

Figure 2 shows the hypothesis constructed 
with at least 10 examples and no more than 4 
literals in a clause from structures A, B, C, D and 
tested on structure E. The induction took less 
than 15 seconds on 700 MHz Pentium III 
computer running Windows 2000. 

We compare results of 4S with results of FOIL 
[27], mFOIL [10], GOLEM [24], MILP [16], FFOIL 
[28], FORS [14] and CLAUDIEN [5] in Table 5. 
Results for FOIL and FFOIL were taken from 
[28], for GOLEM and MILP from [16], for mFOIL 
and FORS from [14] and for CLAUDIEN from [5]. 
We can see that 4S performs better than FOIL 
and mFOIL, slightly better than GOLEM and 
CLAUDIEN, similar to MILP, and FORS and 
worse than FFOIL. 

 

Table 4 Results of FEM domain experiments 
Minimal number 
of examples 

2   5   10   

Maximal number 
of literals  

2 4 6 2 4 6 2 4 6 

Structure used for 
testing 

         

A (55 edges) 22 22 22 22 20 19 21 21 22
B (42 edges) 10 12 12 11 10 7 14 10 13
C (28 edges) 5 10 10 6 5 7 8 8 8 
D (57 edges) 16 21 22 14 20 12 14 21 18
E (96 edges) 20 22 22 11 6 3 9 28 4 
Total correct 
(from 278) 

73 87 88 64 61 48 66 88 65

Table 5 Comparison to other systems on FEM domain 
mFOIL Struc

ture 
FO
IL Lapl m=0 

GOL
EM 

MI
LP

FFOI
L 

FOR
S 

CLAU
DIEN 

4S

A 16 23 22 21 21 21 22 31 22 
B 9 12 12 12 12 15 12 9 12 
C 8 9 9 10 11 11 8 5 10 
D 12 6 6 16 16 22 16 19 22 
E 16 12 12 21 30 54 29 15 22 
Sum 61 62 61 80 90 123 87 79 88 
% 22 22 22 29 32 44 31 28 32 

7. DISCUSSION 

Experiments have shown that the 4S system is 
capable of combining ILP and numerical 
regression. There are two major problems: 
recursion and regression together cause 
instability in the regression process (when 
recursion is used, some input arguments in the 
regression are dependent on output arguments). 
The other problem is that time complexity, which 
is already high in ILP, has additionally increased 
due to additional numeric capabilities. Further 
research is needed to overcome these problems 
and move towards a fully applicable system. 

The severity of both problems can be reduced. 
The time complexity calls for better heuristics and 
optimization of the code, for example in the ILP 
part where construction of equivalent clauses can 
be avoided. The problem with recursion and 



46 

regression demands more effort. Usually ILP 
systems require a complete set of examples to 
successfully induce recursive definitions. 
However, a complete set of examples can be 
expected only in artificial domains and not in real 
world domains. That is why we need to create a 
process that combines available examples and 
simulates the missing examples. 

In summary, 4S performs as well as other 
academic systems dealing with reasonable 
problem domains. If we compare accuracy with 
FORS, 4S performs similarly or even marginally 
better on some domains, while being more 
flexible and tunable to a particular domain. In 
comparison with more complex systems that 
demand inclusion of additional program code, 
setting parameters in 4S is far less demanding 
even for non-specialized users.  

REFERENCES 
[1] A. Appice, M. Ceci, and D. Malerba. Mining model trees: 

A multi-relational approach. In T. Horvath and A. 
Yamamoto, editors, Inductive Logic Programming, 13th 
International Conference, ILP 2003, volume 2835 of 
LNAI, pages 4_21. Springer-Verlag, 2003 

[2] Bratko, I. and Džeroski, S., “Engineering applications of 
ILP”, New Generation Computing 13 (pp. 313-333), 
1995. 

[3] Blockeel, H., Top-down induction of first order logical 
decision trees. PhD Thesis, Katholike Universiteit, 
Leuven, Belgium, 1998. 

[4] Camacho, R., “Learning stage transition rules with 
Indlog”, Proceedings of The Fifth International Workshop 
on Inductive Logic Programming (ILP-94) (pp,273-290), 
Bad Honnef/Bonn, Germany: Gesellschaft für 
Mathematik und Datenverarbeitung Sankt Augustin,  
1995. 

[5] Dehaspe, L., van Laer, W., and De Raedt, L., 
“Applications of a logical discovery engine”, in 
Proceedings of the Fourth International Workshop on 
Inductive Logic Programming (ILP-94), GMD-Studien Nr. 
237, 1994. 

[6] Demšar, D., Dealing witn Numerical Problems Using 
Inductive Logic Programming, Master's Thesis, 
University of Ljubljana, Faculty of Computer and 
Information Science, Ljubljana, Slovenia, in Slovene, 
1999. 

[7] Dolšak, B., and Muggleton, S., “The application of 
inductive logic programming to finite-element mesh 
design”, Stephen Muggleton. (ed.), Inductive Logic 
Programming: Academic Press, 1992. 

[8] Dolsak, B., Bratko, I. and Jezemik, “A, Finite element 
mesh design: An engineering domain for ILP 
application”, Proceedings of the Fourth International 
Workshop on Inductive Logic Programming (ILP-94) (pp. 
305-320), Bad Honnef/Bonn, Germany. Gesellschaft für 
Mathematik und Datenverarbeitung Sankt Augustin, 
1994. 

[9] Džeroski, S., and Todorovski, L., “Discovering dynamics: 
from inductive logic programming to machine discovery”, 
Journal of Intelligent Information Systems, 4.89-108, 
1995.  

[10] Džeroski, S., Handling noise in inductive logic 
programming, Master's thesis, University of Ljubljana, 
Faculty for Electrical Engineering and Computer 
Science, Ljubljana, Slovenia, 1991. 

[11] Džeroski, S., Numerical Constraints and Learnability in 
Inductive Logic Programming, PhD thesis, University of 
Ljubljana. Faculty for Electrical Engineering and 
Computer Science, Ljubljana. Slovenia, 1995. 

[12] Filipič, B., Junkar, M., Bratko, I. and Karaliè, A, “An 
application of machine learning to a metal-working 
process”, in Proceedings of IT-91, Cavtat, Croatia, 1991.  

[13] Junkar, M., Filipič, B. and Bratko, I., “Identifying the 
Grinding Process by Means of Inductive Machine 
Learning”, Computers in Industry, 17(2-3), 147-153, 
1991. 

[14] Karalič, A. and Bratko, I., “First Order regression”. In 
Machine Learning, Volume 26, Numbers 2/3. Kluwer 
Academic Publishers, 1997.  

[15] Karalič, A., First Order Regression. PhD thesis, 
University of Ljubljana, Faculty for Electrical Engineering 
and Computer Science, Ljubljana, Slovenia, 1995.  

[16] Kovačič, M., Stochastic Inductive Logic Programming, 
PhD thesis, Universty of Ljubljana,, Faculty of Electrical 
Engineering and Computer Science, Ljubljana, Slovenia, 
1995 

[17] S. Kramer. Structural regression trees. In Proceedings of 
the National Conference on Artificial Intelligence, 1996 

[18]  S. Kramer. Relational Learning vs. Propositionalization: 
Investigations in Inductive Logic Programming and 
Propositional Machine Learning. PhD thesis Vienna 
University of Technology, Vienna, Austria, 1999 

[19] Križman, V., Avtomatic discovery of structure in dynamic 
systems models, PhD Thesis, University of Ljubljana, 
Faculty of Computer and Information Science, Ljubljana, 
Slovenia, in Slovene, 1998. 

[20] Lavrač, N. and Džeroski, S., Inductive Logic 
Programming - Techniques and Applications, 1994. 

[21] Miller, G. L.,Teng, S. H., Thurston, W. A., Vavasis, S. A. 
“Graph Theory and Sparse Matrix Computation”,  The 
IMA Volumes in Mathematics and its Applications 56, (pp 
57-84), Springer-Verlag, 1993. 

[22] Mizoguchi, F. and Ohwada, H., “An inductive logic 
programming approach to constraint acquisition for 
constraint-based problem solving”, Proceedings of the 5th 
International Workshop on Inductive Logic Programming 
(ILP-95), (pp. 297-322), Katholike Universiteit Leuven, 
Heverlee, Belgium, 1995. 

[23] Muggleton S., Page D., “Beyond first-order learning: 
inductive learning with higher order logic”, PRGTR 13-
94, Oxford University Computing Laboratory, Oxford, 
1994.  

[24] Muggleton., S. and Feng, C. “Efficient induction or logic 
programs”, Proceedings of the First Conference on 
Algorithmic Learning Theory, Tokyo, Japan, 1990. 

[25] Page, C. D., Frisch, A. M., “Generalization and 
learnability: A study of constrained atoms”, in: S. 
Muggleton (Ed.), Inductive Logic Programming (pp 29-
56), Academic Press, London, 1992.  

[26] Quinlan, R. and Cameron-Jones, R. M., “Efficient top-
down induction of logic programs”, SIGART Bulletin 5 (1) 
33-42, 1994. 

[27] Quinlan, R., “Learning logical definitions from relations”, 
in Machine Learning 3(5), 1990. 

[28] Quinlan, R., “Learning First-Order Definitions of 
Functions”, Journal of Artificial Intelligence Research, 
volume 5, (pp 139-161), 1996. 

[29] Srinivasan, A. and Camacho, R., “Numerical reasoning 
with ILP system capable of lazy evaluation and 
customized search”, The Journal of Logic Programming, 
Volume 40, Numbers 2/3, 1999. 

[30] Srinivasan, A., “Experiments in numerical reasoning with 
ILP”, Michie, D., Muggleton, S., and Furukawa, K., (ed.), 
Machine Intelligence 15, Oxford University Press, 1996. 

[31] Srinivasan, A. The Aleph Manual. Technical Report, 
Computing Laboratory, Oxford University, 2000,,  


